Image result for christopher woods bristolChris Woods    (University of Bristol)

Could you tell us a little about yourself and how you became a Research Software Engineer?

I have been coding since preschool when my Dad bought me a Texas Instruments TI-99/4A. This had a simple BASIC, but no tape or disk storage, meaning that all of the code was lost when the computer was switched off. After that, I had an Amiga as a teenager, and had fun coding little games in my spare time. I grew up in a seaside town on the East Coast, and the industry there was just fishing and making frozen food, so it didn’t occur to me that I could do programming as a job. It was just for fun. It was only when I went to University (Southampton) that I saw that programming could be useful for science. I undertook a 3rd-year computational chemistry research project with Jon Essex at Southampton, and from there I was hooked and wanted to become a computational chemist. In Jon’s group in the late 1990’s I helped to build Beowulf compute clusters from scratch (assembling shelves, doing all the cabling, building the cluster installer disks, job schedulers etc.), as well as developing lots of software in first Fortran 77 and then C++ and Python. From there, I moved to Bristol, and wrote lots of grant applications and managed to work for about 10 years on a series of EPSRC and BBSRC funded software development projects (sincere thanks to both funders for the grants). These all culminated in a framework for molecular simulation, called Sire (, around which a reasonable community has formed (about 20+ people have developed the code over the years).

The experience of working with this community made me realise that software engineering was about helping other people develop and play with code. It showed me the importance of leading by example, e.g. adding in tests, using clean designs and APIs, and writing clear documentation (although I readily admit that I am a really bad documenter).

About 2 years ago I was offered a job in BrisSynBio (a BBSRC/EPSRC Synthetic Biology Research Centre), as a technical lead, systems administrator and RSE. I have really enjoyed this position, as it made me step back from my research and really work in “services” to support other researchers. This gave me a completely new perspective on research, as I saw the world from the view of e.g. administrators, finance, procurement and technical services. This showed me that successful research depends on a whole team of energised, committed and dedicated people, and that research software engineers can play an important role as part of the research development team.

What do you think is the role of a Research Software Engineer? Is it different from a ‘normal’ researcher?

For me, research software engineering is about helping junior researchers develop their code right the first time. Helping them to structure their code so that it is easier for them to write flexible, trustably correct and performance portable software without them having to be overburdened with learning a lot of computer science. Following this, good RSE work is helping researchers build flexible frameworks that allow researchers to play with their scientific ideas. The code should allow them to prototype and play with new ideas, to get them running quickly and efficiently first time without having to have people come and re-engineer everything later.

You’ve recently won an EPSRC RSE Fellowship – congratulations! Can you give a brief overview of your project?

My project is about providing a new member of a research team – the research software engineer. This will enable a new way of doing research. Research is team based, and I want to help change the culture so that RSEs are seen as a member of the research team and not a service. The EPSRC RSE project provides funding for me as an RSE to be embedded within research groups to work with them to develop new research. Twenty projects will initially be supported; 10 in the first wave that have been allocated, and then 10 that will be allocated in response to a call. The projects cover everything from modelling chemical reactions, designing new optical machines, creating great visualisations in an interactive 3D planetarium, modelling bacterial factories and engineering new scaffolds for future vaccines.