Safe passage to the future: the value of Maritime Engineering

Maritime Robotics’ L3 Harris CCAT ready for use at sea

Maritime Engineering is often seen as one of the smaller engineering discipline and yet it support one of the most important sectors of the UK economy [Maritime 2050: Navigating the future, UK Dept for Transport].  With seas and oceans often out sight in our day-to-day lives it is often overlooked.

A recent study from the US indicates that it is worthwhile taking a closer look at the maritime disciplines of Naval Architecture and Marine Engineering.  These were rated as the best value for money degree, in a comparison to all other 162 fields of study considered. While we don’t have immediate access to similar study in the UK our experience is certainly that our graduates are always in strong demand.

Why is this?  As the recent government led Maritime 2050 report indicates it is vital to our prosperity and security. We rely on the oceans for our trade, for sustainable food and for an ever increasing part of our energy from marine renewables.  MaritimeUK is championing the sector which is:

Supporting over 1 million jobs and adding £46.1bn to our economy, maritime is responsible for facilitating 95% of UK global trade, worth over £500bn per year. The UK maritime workforce is 42% more productive than the average UK worker. Maritime makes a greater contribution to the UK economy than both rail and air combined

Naval Architects and Marine Engineers are vital to the success of the world’s ‘blue economy’. This could be the design of ships to carry cargo around the world, offshore wind and tidal devices to harvest green renewable energy , autonomous underwater and surface vehicles to explore the oceans , superyachts for leisure and racing yachts such as those for the America’s Cup. Many of our graduates can be found outside of design in the production and safe operation of these vessels, as data analysts or as brokers. They are embracing the digital revolution in Maritime Engineering, where AI, Machine Learning, carbon fibre composites, 3D additive manufacturing and autonomous systems are opening up careers in this growing sector.  

While it is good to see that Maritime Engineering provides financially rewarding careers it has always been the case that the engineering challenges are significant and are stimulating in their own right. Professional Naval Architects can trace their origins back to at least the Romans, with their associations of shipwrights. Today we need to face the challenge of decarbonisation, cleaning the oceans all while ensuring that in the future our use of its vast resources is sustainable. All of these will need a bright, committed and diverse next generation of Maritime Engineers –  please contact us if you would like to find out more.

Our Maritime Engineering degree programmes at Southampton are accredited by three leading professional engineering societies, Royal Institution of Naval Architects, RINA, Institute of Maritime Engineers, Scientists and Technologists. ImarEST and the Institution of Mechanical Engineering, IMechE.

Slow and steady vs fast and furious

Recent papers in Engineering Optimisation and Sports Engineering and Technology by lead author Dr Chris Phillips reported on work from his PhD studies investigating the energetics of underwater fly kick in swimming .

Bubble screen helping capture behaviour of fluid during flykick

It is an interesting question in performance swimming, especially in longer events, is for how long and with what intensity an underwater fly kick can be used? A more intense, mainly lower leg intense kick may well allow a faster speed but is it worth the energy cost compared to a more whole body wave motion ?

Image from dynamic motion capture showing key point locations and corresponding element positions

This work carried out by the performance sport engineering laboratory used a combination of kinematic measurements of a world class swimmer, an applied fluid dynamics code using Lighthill’s method and a state-of-the-art muscoskeletal analysis code to use the measured motion, coupled with estimates of fluid loading to evaluate the likely muscle activity required and hence energy cost of two approaches to underwater fly kick. Optimisation methods were used to generalise the approach from a specific swimmer to a more general result.

Anybody image of same poistion taht allows estimates of muscle group engagement

So how should swimmers trade-off their techniques during a race? Watching the best, especially as they proceed through heats to final clearly shows that they understand that the trade-off is there to be made. But what is clear to all is that having a great underwater fly kick techniques that allows a swimmer to access both methods is a powerful tool to deploy in competition.

Reducing ships fuel emissions via AI-driven voyage optimisation software

Despite the fact that shipping is such an efficient form of transport, it still accounts for ~2% of world emissions. With 50,000+ commercial vessels operating in our ocean’s there is plenty of room to improve the efficiency of these vessels to help our planet. This view is supported by shipping’s regulators and there is increasing legislative pressure to reduce greenhouse gases emissions. This increase in legislation is in combination with the increase in the cost of compliant fuels and has led to a high demand for solutions to reduce fuel-consumption of commercial vessels.

Therefore, Dr Adam Sobey and Dr Przemyslaw Grudniewski from the Maritime Engineering group at the University of Southampton have partnered with Theyr ltd to create an efficient voyage optimisation solution for commercial vessels. The project will focus on combining real-time high-fidelity met-ocean data, provided by Theyr ltd, with a world-leading Genetic Algorithm, developed previously by Dr Sobey and Dr Grudniewski. This will increase the robustness and effectiveness of voyage planning, allowing vessels to avoid poor weather and travel at efficient speeds to reduce greenhouse gases emissions.

The project is funded by a grant from the £4.8 million SPRINT program (SPace Research and Innovation Network for Technology), which was developed to help merge commercial data and technologies with innovative university research.  Furthermore, it is planned to utilise the IRDIS 5 supercomputer, the UK’s largest academic supercomputer located in University of Southampton, to accelerate the verification process. We hope a number of student projects will be developed in parallel to this research to help the team solve these challenging issues and provide creative solutions to provide real world impact.

Further details can be found in the trade and engineering press: FreightcommsSHIP Technology, Vessel Performance Optimisation and the May 2020 issue of the Naval Architect, published by the Royal Institute of Naval Architects.

Awarding times for ocean exploration


An Autonomous Surface Vehicle (ASV) towing two Autonomous Underwater Vehicles (AUVs) out to shore form the port of Kalamata, Greece

Dr Blair Thornton, Associate Professor of Marine Autonomy in the FSI group and Director of the Centre of Excellence for In situ and Remote Intelligent Sensing (IRIS) has recently been awarded the 2020 Waterway Technology Award in Japan as part of Team KUROSHIO, Japan’s entry to the $7M Shell Ocean Discovery X-Prize.

For more information visit

http://www.jamstec.go.jp/team-kuroshio/en/team/

https://ieeeoes.org/oes-beacon/september-2019-oes-beacon/team-kuroshios-story-runner-up-of-the-shell-ocean-discovery-xprize/ `��

Team KUROSHIO recently placed 2nd in the 2019 Shell Ocean Discovery X-Prize, receiving a $1.1M runner up cheque at the award ceremony held in June 2019 in Monaco. 

The Shell Ocean Discovery X-Prize was an international robotics competition that saw 27 teams from around the world to compete for a total prize of $7M. The competition was held in Kalamata, Greece in December 2018, and required teams to survey a 500km2 region of seafloor located 15 nautical miles from shore at a depth of 4000m in the Mediterranean sea. At 4000m depth, maps generated from ships equipped with state of the art acoustic mapping devices would only achieve a resolution of ~40m, but teams here were required to generate maps with better than 5m resolution, meaning that they would need to deploy submersible robots the achieve this feat. Teams had 48hours to complete this ambitious challenge, where all operations from the moment the robotic platforms entered the water at the port of Kalamata until their eventual return to the port had to be carried with not human intervention. 

Team KUROSHIO’s entry consisted of two, 4000m depth rated Autonomous Underwater Vehicles (AUVs) and an Autonomous Surface Vehicle (ASV). The team was able to successfully transit from the port to the survey site and deploy their systems to survey over 100km2 of the seafloor in the available time. Once the systems found their way back to shore, the team had a further 48 hours to process the data collected by the submersibles, to determine their location in GPS denied underwater environment, and generate 5m resolution maps of the seafloor in the surveyed region. Team KUROSHIO placed second to GEBCO Alumni, an international team consisting of 30+ members. 

In addition to receiving the $1.1M runner up prize for their achievement in the competition, the members of Team KUROSHIO were invited by Prime Minister Shinzo Abe to be congratulated by him directly, and receive the 2020 Waterway Technology Award for this outstanding achievement. 

If you want to try your hand at Maritime Robotics, you can find current opportunities to do a PhD in the subject here

https://hydro.soton.ac.uk/wp-content/uploads/sites/297/2020/01/lanchaster-1.pdf

and here

https://www.southampton.ac.uk/iris/

Or if you just want to see some videos of related activities, visit these links 

IRIS centre – https://www.youtube.com/watch?v=Pj0KvSwsnCE&feature=emb_logo

Adaptive Robotics – https://www.youtube.com/watch?v=uQVnabh45u4

If you are an undergraduate and want to get involved, you can take SESS6072 Maritime Robotics of contact any member of staff about projects and internships in Maritime Robotics.

HUman in the loop

As we consider how best to use autonomous systems in the maritime sector it becomes ever more important to consider the human factor in the design and safe operations of ships. Current third year ship science student Dhwani Oakley recently presented at the Royal Institution of Naval Architects(RINA) International Conference on Human Factors at RINA HQ in London.

The motivation for the conference as stated by RINA reflects the growing awareness of the importance of human factors within ship design. The work of naval architects and marine engineers directly influences the operability and safety of ships and seafarers and decisions made at the design stage influence human behaviour. Therefore an improved understanding of human factors and ergonomics by engineers can help us identify and ‘design out’ hazards which cause accident and injury.

The conference included discussion around a wide range of human factors topics including:

  • The integration of human factors into the design process
  • Practical applications of human factors engineering
  • Improving habitability
  • The design of navigation & control systems and onboard operational organisation and teamwork.
  • The design for safety and performance

Dhwani delivered a presentation about the role of Class in human factors and the development of ergonomics guidance for safe access and egress, Dhwani’s work was carried out while working as an intern last summer with Lloyd’s Register’s (LR) Global Technology Centre. LR are also based on our University Boldrewood Innovation Campus (SO16 7QF)

Ship Science at the International 14 Worlds in Perth

The International 14 World Championships have just been completed in Perth Australia.  Ship Science graduate Tom Partington (2010) and his dad Andy were defending champions having clinched the title in 2018 in San Francisco.  They started the series well with a second and sixth in the first two races.  The windy conditions for races 3 and 4 resulted in damage to their bowsprit causing them to retire from both races.  This ended their defence of the title as only one race could be discarded.

Andy and Tom Partington sailing Penguin Dance (GBR1559) in Perth

However, not all was lost for Ship Science, Daniel Holman  who graduated from Ship Science in 2012 and his crew Alex Knight fought hard to the end of the regatta with wins in the final two races to secure second place.  The regatta was won by fellow British paring and multiple world champion Archie Massey and his crew Harvey Hillary.  Third place was taken by Neale Jones and Edward Fitzgerald to see all three podium places occupied by British boats.

Daniel Holman and Alex Knight sailing Helly the Pelly (GBR1556) in Perth

Great British SHIPS

If you have a little more free time over the holiday period then one way to relax might be to watch the second series produced by windfall films for channel 5 on Great British Ships. Our own Professor Dominic Hudson takes part in the episode on RMS Queen Mary. A fascinating episode, especially with respect to Queen Mary’s role as a fast troop carrier in WWII.

One aspect related to its encounter with a rogue wave and its resultant large angle of roll. An effect very nicely illustrated using the wave maker system in our Boldrewood towing tank. The programme presenter took to a kayak to demonstrate how vessels can safely pass through large waves head on but are more challenged when side on. If you watch carefully (at about 30 or so minutes in) although the kayak does indeed capsize in the extreme wave there might have been a little bit of paddle assist…

This is not the first time our towing tank has been used for TV programmes, see for example the BBC documentary commemorating the 100th anniversary of the Battle of Jutland. The biggest impact so far is Dr Sally Bennett’s video of a large amplitude regular wave which so far has reached 2.9M views on YouTube.

Yacht racing forum 2019

The annual Yacht Racing Forum of 2019 took place in Bilbao, Spain during 25th and 26th of November. A host of key stakeholders participated including yacht designers, yacht builders, pro sailors, academics, event organizers and equipment manufacturers, all from the forefront of technology and the most important international yacht racing events such as America’s Cup, Ocean Race, Olympics, IMOCAs etc.

Awesome engineered foil

The University of Southampton represented at this very prestigious event by MSc student Mr. Menelaos Xanthis. He presented about work used for his MSc dissertation on “Keel failures:  A probabilistic structural reliability study using Monte Carlo simulation”. This project was conducted under the supervision of Dr James I.R. Blake and was presented in the session “New Talents in Yacht Design”.

Several topics of great interest were discussed during the forum. In the field of sailing management, the main topics where about managing events, races or sailing teams, but also about the future and evolution of sailing racing regulations.

In the design and technology field, the most prominent and recurring theme was the evolution of foiling. It was a common belief among the participants that foil size and importance will not stop to grow in the foreseeable future, and also because of the complexity of the system, electronics will be employed more frequently.  

              Of course, as in every other aspect of human activity, the topics of the environment and the climate were prominent. Of particular interest were the topics of environmentally friendly equipment including hulls, clothing etc, and especially the inability to produce recyclable hulls of high racing ability, but equally the impact that events and gear can have on the environment and how this can be mitigated.

It is also worth mentioning that as discussed in the meteorology and climate session, the changes in weather patterns are expected to impact heavily the ocean yacht racing events. Icebergs will appear more often and in areas where previously were not observed, and also the hurricane season will be less predictable, as will be the path of hurricanes. All these phenomena are expected to open new routes not previously accessible, but also potentially endanger participants in racing events.  

The forum concluded with the announcement of the Racing Yacht Forum of 2020 which will be hosted in Portsmouth.

Scourge of Ocean Plastics

  

How we deal with the seemingly endless tide of discarded plastics within our environment and in particular our oceans is an immediate challenge. Several teams of current Ship Science students participated in a competition organised by the Western joint branch of ImarEST and RINA. The challenge was to find a design solution that could cost-effectively collect and remove macro plastic from the ocean. University of Southampton teams were placed first and second. Diogo Figuiera Nunes, Alex Pardoe and Tom Kenwright proposed Oceanum Nova. A concept design for a fleet of catamarans that would act as mobile platforms for plastic removal. The USP of their design was the fact that it brought together many different designs that have already been tried and tested and were therefore confident that they would work.

GA of proposed catamaran

We face many maritime engineering challenges with regard to dealing with the legacy of past generations as well as the challenges of how we reduce future ship emissions. Modules such as a our SESS6074 Marine Safety: risk, environment and law equip students for the wider challenges of the future.

Our Master of Engineering degree has been updated to reflect the future challenges we all face in engineering in the maritime environment. We now have six pahways reflecting the challenges of decarbonisation, increased autonomy and digitalisation.:

(i)Advanced Computational Engineering

(ii) Marine Engineering and Autonomy

(iii) Naval Architecture

(iv) International Naval Architecture

(v) Ocean Energy and Offshore Engineering

(vi) Yacht and High Performance Craft

In future posts we will explore something of the exciting aspects of each pathway at Southampton.

Ship Science graduate conquers the Atlantic

Ship Science graduate, Calum Healey was part of the crew of Pata Negra, a Lombard 46, which was competing in the RORC transatlantic race.  They finished second overall.

Callum conducted research into the relative performance of two centreboard designs for the Merlin Rocket for his final year dissertation.  He undertook tests at full scale in open water, recording data to determine the performance differences.

The video below shows an interview with the crew of Pata Negra having arrived safely in Grenada.