

Standard Electrode

Oxidising and reducing agents

- It can be hard to remember which ones are oxidising agents and which ones are reducing agents.
- The top of this table are elements that are keen to lose electrons.

		Potential
	Reaction	(∨)
Ρ	potassium cation + electron $ ightarrow$ potassium	-2.93
S	sodium cation + electron \rightarrow sodium	-2.71
L	lithium cation + electron \rightarrow lithium	-3.04
С	calcium cation + electrons $ ightarrow$ calcium	-3.02
М	magnesium cation + electrons \rightarrow magnesium	-2.37
А	aluminium cation + electrons $ ightarrow$ aluminium	-1.66
Z	zinc cation + electrons \rightarrow zinc	-0.76
I	iron cation + electrons \rightarrow iron	-0.04
Н	proton + electron → hydrogen	0.00
С	copper cation + electrons \rightarrow copper	+0.34
S	silver cation + electron \rightarrow silver	+0.79
G	gold cation + electron \rightarrow gold	+1.69

• If something is keen to lose electrons, like lithium, something else will have to gain them.

Lithium \rightarrow Lithium cation + electron

Bromine + electron \rightarrow Bromide

In this reaction, bromine has gained electrons to give bromide. It has been reduced. Lithium has acted as a reducing agent.

Lithium though, as a chemical that *reduces* other things has itself been *oxidised*.

- 1) Will an oxidising agent have a positive or negative standard electrode potential?
- 2) Would the reduction of fluorine have a positive or negative electrode potential? Would fluorine gas be a good oxidising agent of reducing agent?

