

How Best to Discover Novel Bioactive Small Molecules?

Prof. Adam Nelson School of Chemistry, University of Leeds, UK a.s.nelson@leeds.ac.uk

Impact of high-quality chemical probes

 Biologists' favourite proteins are broadly unchanged in >20 years (data for protein kinases)

2. **High-quality chemical tools drive biomedical science** (data for nuclear hormone receptors)

See: A. M. Edwards, Nature 2011, 470, 163

See A. H. Lipkus et al, J. Org. Chem. 2008, 73, 4443

See A. H. Lipkus et al, J. Org. Chem. 2008, 73, 4443

See A. H. Lipkus *et al*, *J. Org. Chem.* 2008, **73**, 4443

Why such uneven exploration?

Reaction type	Number of reactions	% of all reactions
Amide formation	1165	16.0
N-alkylation	776	10.6
N heterocycle formation	537	7.4
N-arylation	458	6.3
RCO ₂ H deprotection	395	5.4
N-Boc deprotection	357	4.9
Suzuki cross-coupling	338	4.6
O-substitution	319	4.4
Other NH deprotection	212	2.9
Total	4557	62.4

Analysis of 7315 reactions from 140 papers published by major pharmaceutical companies: *J. Med. Chem.* 2011, **54**, 3451

Searching chemical space

An uneven search of chemical space...may not reveal the peaks of activity

Searching chemical space

Planned and unplanned synthesis of diverse small molecules

1. Lead-oriented synthesis

2. Activity-directed synthesis

Deliberate synthesis of large numbers of lead-like molecular scaffolds Synthetic targets **not** planned: instead, prioritised on the basis of their **function**

Angew. Chem. Int. Ed. 2009, 48, 104 (VIP article)

See also highlights in *Nature* (Schreiber), *Nature Chem. Biol.* (Waldmann), *Angew. Chem.* (Spring) and *Nature Chem*.

Comparison of alternative approaches to generate molecular diversity

Diversity-oriented synthesis

High

Diversity

MolecularLow levelpropertiesof control

Reliability ofHigh levelreaction toolkitrequired

ResourceEqual focusfocused onon allbioactives?compoundsAligning synthetic methods with molecular property requirements:Angew. Chem. Int. Ed. 2016, 55, 13650

Chem. Comm. 2017, 53, 12345

Chem. Comm. 2017, 53, 12345

LLAMA, an open-access tool for assessing the lead-likeness of scaffolds

1. Prepare simple precursors

2. Generate complexity

3. Exploit complexity

[5+2] cycloadditions: Advances in cycloaddition, **1999**, 6, 1 Related: *Nat. Chem.* **2013**, 5, 195; *J. Am. Chem. Soc.* **2015**, *137*, 6327

1. Prepare simple precursors

2. Generate complexity

3. Exploit complexity

[5+2] cycloadditions: Advances in cycloaddition, **1999**, 6, 1 Related: *Nat. Chem.* **2013**, 5, 195; *J. Am. Chem. Soc.* **2015**, *137*, 6327

Chem. Eur. J. 2017, **23**, 15227 Translation into ELF: *Drug Discov. Today* 2018, **23**, 1578

Chem. Eur. J. 2017, **23**, 15227 Translation into ELF: *Drug Discov. Today* 2018, **23**, 1578

Shape diversity of our fragments

Decoration yielded a shape-diverse fragment set (54 fragments):

- The library was screened against 4 distinct proteins (3 classes):
 - ATAD2A (bromodomain): 8 hits
 - AURA (protein kinase): 4 hits
 - BRD1A (bromodomain): 10 hits
 - JMJD2DA (histone demethylase): 3 hits

- ATAD2 (<u>AT</u>Pases <u>A</u>ssociated with <u>D</u>iverse cellular activities)
- Acetyl-lysine-binding bromodomain
- Over-expressed in several cancers
- Binding site is polar and shallow

Med. Chem. Commun. 2014, 5, 1843

Chem. Eur. J. 2017, 23, 15227

2 more hits with similar binding modes:

Chem. Eur. J. 2017, 23, 15227

Comparison of alternative approaches to generate molecular diversity

	Diversity-oriented synthesis	Lead-oriented synthesis	Activity-directed synthesis
Diversity	High	High within defined chemical space	
Molecular properties	Low level of control	High level of control	
Reliability of reaction toolkit	High level required	High level required	
Resource focused on bioactives?	Equal focus on all compounds	Equal focus on all compounds	

Focusing the search of chemical space

evolutionary feedback

Objective: To develop a known fragment into novel chemotypes that agonise the androgen receptor

Rationale for choice of chemistry

Ideally require: • Diverse reactivity

- Potential for asymmetric synthesis
- Multiple possible pathways for each substrate
- Fate tunable through choice of catalyst and ligand
- Either inter- or intramolecular

Rationale for choice of chemistry

- Ideally require: Diverse reactivity
 - Potential for asymmetric synthesis
 - Multiple possible pathways for each substrate
 - Fate tunable through choice of catalyst and ligand
 - Either inter- or intramolecular

Rationale for choice of chemistry

Compatible with other catalyst systems

Evolution of bioactivity: First array

Nature Chemistry 2014, 6, 872

Evolution of bioactivity: Second array

Activities are expressed relative to 5 μM testosterone Nature Chemistry 2014, **6**, 872

Evolution of bioactivity: Third array

Nature Chemistry 2014, 6, 872

Scale-up, purification and assay

Nature Chemistry 2014, 6, 872

Comparison with independent sample

Overview of some chemotypes explored

From a reaction from round 1 (with borderline activity at 10 μ M)

 $EC_{50} = 700 \text{ nM}$ (26%; partial agonist)

EC₅₀ = 11 μM (13%)

(EC₅₀ > 500 μM) (12%)

Nature Chemistry 2014, 6, 872

Overview of novel chemotypes discovered

Nature Chemistry 2014, 6, 872

Moving to intermolecular reactions

Angew Chem Int Ed 2015, 54, 13538

Angew Chem Int Ed 2015, **54**, 13538

Discovery of an enantioselective reaction

Rh-catalysed asymmetric O-H insertion not previously known!

Angew Chem Int Ed 2015, 54, 13538

Features of Activity-Directed Synthesis

Feature	Comment	
Chemical Diversity	 Very high – promiscuous reactions preferred! Multiple charactura excelered in parallel 	
	 Multiple chemotypes explored in parallel 	
Molecular Properties	Controllable if required	
Focus of resources	Highly focused on actives	
Nature of workflow	All stages integrated and parallel	
Autonomy	Potential for fully autonomous discovery	
Generality	 Only requirement is robust high-throughput assay 	
	 Can be exploited in different ways e.g. to elaborate fragments or to hop between scaffolds 	

Towards integrated autonomous bioactive molecular discovery?

Streamlining bioactive molecular discovery through integration and automation

Shiao Chow, Samuel Liver and Adam Nelson

Abstract | The discovery of bioactive small molecules is generally driven via iterative design-make-purify-test cycles. Automation is routinely harnessed at individual stages of these cycles to increase the productivity of drug discovery. Here, we describe recent progress to automate and integrate two or more adjacent stages within discovery workflows. Examples of such technologies include microfluidics, liquid-handling robotics and affinity-selection mass spectrometry. The value of integrated technologies is illustrated in the context of specific case studies in which modulators of targets, such as protein kinases, nuclear hormone receptors and protein-protein interactions, were discovered. We note that to maximize impact on the productivity of discovery, each of the integrated stages would need to have both high and matched throughput. We also consider the longer-term goal of realizing the fully autonomous discovery of bioactive small molecules through the integration and automation of all stages of discovery.

Nature Rev. Chem. 2018, 2,174-183

Comparison of alternative approaches to generate molecular diversity

	Diversity-oriented synthesis	Lead-oriented synthesis	Activity-directed synthesis
Diversity	High	High within defined chemical space	Very high
Molecular properties	Low level of control	High level of control	Controllable if required
Reliability of reaction toolkit	High level required	High level required	Ideally promiscuous reactions
Resource focused on bioactives?	Equal focus on all compounds	Equal focus on all compounds	Highly focused on bioactives

Acknowledgments

PhD students

Robert Hodgson Joanne Holland Chrissie Carter Stephen Bartlett Neetu Kaushal Claire Crawford Matthew Edmundson Chris Cordier Mandy Bolt **Catherine** Joce Adrian Fowkes Sarah Murrison Martin Fisher Nicole Timms John Li Adam Daniels Tom James **Adam Green** Emma Stirk Luke Trask Chris Arter Scott Rice Abbie Leggott

Alexis Perry Tom Woodhall **Ben Whittaker** Alan Ironmonger Mark Anstiss Karen Dodd Lorna Farnsworth Stuart Leach Catherine O'Leary-Steele **Rebecca** White Angela Kinnell Tom Harman Paolo Tosatti Ivan Campeotto **Rachael Shearer Mark Dow** Christian Einzinger **Kristina** Paraschiv Ephraim Okolo

Charles Lardeau Giorgia Magnatti Hannah Kyle Steven Kane **George Karageorgis** Jenny Stockwell Alun Myden George Burslem **Dan Foley** Steven Kane Sasha Derrington Claire Windle Robert Smith

Joan Llinas Mayol

Alex Moloney Sam Liver Jacob Masters Chloe Townley Emily Faulkner

Academic collaborators Steve Marsden Stuart Warriner

Frank von Delft (Diamond) Patrick Collins (Diamond)

Postdocs

Blandine Clique Mike Harding Silvie Domann **Gavin Williams** Tamara Belyaeva Stephen Worden Teresa Damiano Heather Bone Gordon McKiernan Dan Morton Jon Shepherd Louise Horsfall **Ieuan Davies** Jackie Ouzman Joachim Horn Chris Rundell Haitham Hassan Naim Stiti **Dan Francis** Samuel Griggs

Francesco Marchetti Sushil Maurya Sophie Gore Paul MacLellan Marion Mueller **Richard Doveston** Raj Sundaram **Philip Craven** Ignacio Colomber **Anthony Aimon** James Firth James Clayton James Howard Tom Ackrill **Tom James** Kat Horner Shiao Chow Alex Trindade

Matthew Foulkes

Industrial Collaborators Remy Morgantin et al (Edelris) Ian Churcher (GSK) Chris Tinworth (GSK) Will Farnaby (Takeda)

Acknowledgments

EPSRC (Established Career Fellowship and PoPPI) EU Innovative Medicines Initiative University of Leeds AstraZeneca GSK Takeda