Enabling synthesis in FBDD

Dial-a-Molecule Annual Meeting 2018

Rachel Grainger
FBDD – Fragment Based Drug Discovery

Fragments:
- **Low MW, polar molecules** are used to identify binding pockets on a target protein

Structure-led design:
- Increased target affinity is achieved by designing chemical probes to interrogate protein architecture

Specific growth vector elaboration:
- Fragments are elaborated in **specific directions** along well-defined **vectors** to generate **bespoke** lead compounds
FBDD – Synthetic considerations

• **Fragments:**
 – Low MW, polar molecules are used to identify binding pockets on a target protein

• **Structure-led design:**
 – Increased target affinity is achieved by designing chemical probes to interrogate protein architecture

• **Specific growth vector elaboration:**
 – Fragments are elaborated in specific directions along well-defined vectors to generate bespoke lead compounds

Minimal pharmacophore can present regioselectivity and reagent compatibility issues

Growth vectors can be difficult to access synthetically

Design rationale vs Synthetic tractability
Traditional vs cutting edge synthesis techniques

Traditional vs cutting edge synthesis techniques

\[
\text{traditional} \quad 3 \text{ steps}
\]

J. Org. Chem, 2016, 81, 6980
Problematic heterocycles

- Aliphatic heterocycles

 - [Chemical structures]

- Nitrogenous heteroarenes

 - [Chemical structures]
Bespoke synthetic toolbox for FBDD

- At Astex we are exploring the use of liquid handling robots for optimisation and reaction discovery
- C–H functionalisation techniques e.g. Hydrogen Atom Transfer (HAT) catalysis can permit direct elaboration on native fragments
Bespoke synthetic toolbox for FBDD

Single electron transfer processes:

- Tolerate polar motifs – good for heterocycles!
- Performed in polar solvents – good for liquid handling robots
- Ambient temperature – good functional group tolerance
- High value couplings (e.g. sp²-sp³ coupling, nitrogen-rich compounds)

Highly accessible thanks to revolution in photoredox catalysis!
HTE Workflow

Source plate dosing
- Andrew Alliance LHR
- Flexibility of Consumables
- Free X,Y,Z movement

Reaction plate dosing
- Mosquito® LHR
- 125 nmol scale
- 2.5 µL reaction volume
- ~40 mg substrate/plate
- 100-1000s combinations

Science, 10.1126/science.aar6236 (2018); Science, 2015, 347, 49
HTE Workflow

Analysis
- Reformat into 384 well plate with Mosquito®
- Semi-quantitative hit analysis by LC-MS
- μmol scale up to confirm structure by NMR
New reaction discovery – Heteroarylation of amines

- Reaction conditions elucidated on nanogram scale in MTP
- Photoredox mediated cross-dehydrogenative coupling (CDC)
- α-amino radical Minisci-type addition to heteroarenes
- 112 substrates screened (56% hit rate)
 - explored Structure Reactivity Relationship (SRR) of methodology
- Reaction performed on gram scale in flow
 - in collaboration with Prof. Steven Ley and Dr. Fabio Lima (University of Cambridge)
Examples of Substrate Scope

\[\text{PG} \text{H}_{\text{et}} + \text{PG} \text{H}_{\text{et}} \xrightarrow{\text{DMSO}} \text{PG} \text{H}_{\text{et}} \]

- 40%
- 80%
- 90%
- 42%
- 81%
- 58%

\[\text{Boc-N} \text{CO}_2\text{Me} \]
- 30%

1.3g, 2h
\(\tau = 10\text{min} \)

- 58%
- 83%
- 41%
- 63%
- 69%
- 56%

\[(\alpha:\beta) 1.5:1 \]

Manuscript in preparation
Summary

- New synthetic methodology developed using cutting edge chemistry technologies
 - Photoredox heteroarylation of amines
 - HTE screen on ng-scale
 - Valuable sp²-sp³ CDC
 - g-scale reaction in flow
- Explore Structure Reactivity Relationships (SRR)
 - Standardised data…reaction prediction
- Enabling fragment growth vectors and improving fragment kinship
- Need to overcome analytical bottleneck!
Sustaining Innovation Postdoc Scheme at Astex

- Propagation of Astex’s scientific culture
- Exploratory research in a multi-disciplinary team
- Academia in Industry – focus on publication
- 5 postdocs/year
- 3 year contract
- Focus on internal and external collaboration
Acknowledgements

- Prof Steven Ley
- Dr Fabio Lima
- SI Postdoc scheme
- Dr Ben Cons
- Dr James Day
- Dr Tom Heightman
- Dr Chris Johnson
- Dr Nick Palmer
- Dr David Rees
- Mr Stuart Whibley

© Astex Pharmaceuticals