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What is “cognitive chemical manufacturing”?

* Cognitive chemical manufacturing is an information framework where data
across chemical systems, equipment and processes are utilised to derive
actionable insight across the entire value chain from design through
manufacture to support.

* Cognitive manufacturing drives at key productivity improvements in quality,
efficiency, and reliability of the manufacturing environment.

* [t employs cognitive technologies, including

- Intelligent assets and equipment: utilizing connected sensors, analytics,
and cognitive capabilities to sense, communicate and self-diagnose issues
in order to optimize performance and reduce unnecessary downtime

- Cognitive processes and operations: analyzing a variety of information
from workflows, context, process, and environment to drive quality,
enhance operations and decision-making

- Smarter resources and optimization: combining various forms of data
from individuals, location, usage, and expertise with cognitive insight to
optimize and enhance resources such as labor, workforce, and energy




Cognitive Chemical Manufacturing

£2.5M Project using Machine Learning to Optimise Chemical Manufacturing starting July-Sept 2018
EPSRC call on ‘Digital Manufacturing Potential’

Led by IPRD Leeds (PI: Richard Bourne)

Academic Partners: University College London, University of Nottingham, Hartree Centre

Industrial Support: IBM, AstraZeneca, Swagelok and Promethean Particles

4 year project with 14 years of PDRA time
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Project Vision

Experiments are performed by a linked network of multiple reactor systems — like multi threaded computer

cores
Individual reactions are allocated from the cloud based on reactor capability and the efficiency of performing

experiments
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Synthesis in flow
API synthesis

Lab scale
® Leeds University
° AZ

Plant scale
® Leeds University

Nanomaterial synthesis
Lab scale

® Leeds University

® Nottingham University

Plant scale
® Promethean Particles

Execution Service




Self-Optimising Lab-Bot
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* Algorithmic approach to optimising chemical reactions.
* New experiments generated based on previous results via a feedback loop (from the cloud).

* Optimum is verified by experiment.



Selt-Optimisation - LabBot
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Optimum Conditions:
8.57 min, 10 °C,
10 eq MeNH,, 94%
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Design of Experiment

Central Composite Faced Design (CCF)
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Design of Experiments

Contour Plot (0 °C)

Response Contour Plot - CCF Nicotinic Amide MS (MLR) Amide [%]
Amide [%]
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IPRD focus:

IPRD: On the Chemistry — Engineering interface

“Supporting chemical companies of all sizes

by providing understanding and solutions
for product and process development”

Pre competitive fine chemical manufacture related R&D
delivering process understanding & new technology

Research focus driven by challenges in manufacturing
Generate students with an aptitude for process R&D

Facilities
* Industrial standard development lab with Pilot Scale capabilities

e 20 L scale kg laboratory
funded by Yorkshire Forward/EU (ERDF)

* 5m FC for flow processing

Project Part-Financed
by the European Union

European Regional
Development Fund
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NP synthesis - in flow using a new Lab-Bot

Metallic nanoparticles in
carbon nanoreactors
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NP synthesis - in flow using a new Lab-Bot
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: PrometheanParticles
NP synthesis - Scale up .

Formulating solutions with nanomaterials
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Kinetic models and parametrisation
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SimBots

LabBots
Leeds, Nottingham, Swagelok)
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The UCL Team
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Dr. Federico Galvanin
(UCL Lead)

A 7A
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Research Interests

* Design of Experiments (DoE) and statistical planning

* Model-based Design of Experiments (MBDOE)
e Kinetic modelling in catalytic systems

* Machine learning applications to model identification

* Modelling of stochastic systems

Imperial College
London

Dr. Michail Stamatakis

Centre for
Process
Systems
Engineering

Research Interests

 Computational catalysis

* Chemical reaction engineering
“ * Multiscale modelling

* Microkinetic modelling

* Kinetic Monte Carlo



UCL Team Contribution to the Project

Co-supervision (with Michail) of a 4-year PDRA at UCL

Main goal of the UCL team: to develop a SimBot platform for the automated generation and
identification of kinetic models based on kinetic motifs.

The Simbot will be developed in a high level programming language, and it will integrate:
e Automated generation of kinetic motifs/model structure generation

* Online model-based design of automated experiments

e Data analysis

* Process simulation

 Machine learning techniques for model identification

The Simbot will be integrated in the cloud systems for the easy simulation, identification and
optimisation of process models.



Development of the Simbot

Online design of

experiments for
model identification

Generation and
analysis of complex
reaction networks
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lRangarajan, S., Bhan, A., Daoutidis, P. (2012). Computers & Chemical Engineering, 45, 114.



Online design of experiments for fast identification of kinetic models
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!Galvanin, F.,, Barolo, M., & Bezzo, F. (2009). Industrial & Engineering Chemistry Research, 48, 4415-4427.
Hunter, W. G., A. M. Reiner (1965). Technometrics, 7, 307-323. 21
3Box, G. E. P, H. L. Lucas (1959). Biometrika, 46, 77-90.



Framework for the online identification of parametric models?

Identification requires
* a precise estimation of 0
» the conditions u € U where

the model is reliable, i.e.

the domain of validity .5

approximated
model structure

y =g(0,u)

The procedure continues until a
pre-defined statistical quality of
parameters is achieved

experimental
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Model-Based Data Mining
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IM. Quaglio, E.S. Fraga, E. Cao, A. Gavriilidis, F. Galvanin (2018),
Chemometrics and Intelligent Laboratory Systems , 12, 134-149.
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Overall vision

* Individual reactions are allocated from the cloud based on reactor capability and
the efficiency of performing experiments

* Qutputs

* Optimal design of experimental conditions/kinetic modelling
(speed/resource/cost)

 Demonstration of optimisation using pilot scale flow reactors
(IPRD/Promethean Particles)

* Reactors will be cognitive, capable of detecting possible future failures and
performing experiments in reaction to previous results

* Model-based process design and optimisation
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