Cognitive Chemical Manufacturing

Dial-a-Molecule Annual Meeting 2018: Enabling Synthesis

9-10th July

i-HUB, Imperial College, White City Campus

Dr Tom Chamberlain & Dr Federico Galvanin

What is "cognitive chemical manufacturing"?

- Cognitive chemical manufacturing is an information framework where data across chemical systems, equipment and processes are utilised to derive actionable insight across the entire value chain from design through manufacture to support.
- Cognitive manufacturing drives at key productivity improvements in quality, efficiency, and reliability of the manufacturing environment.
- It employs **cognitive technologies**, including
 - Intelligent assets and equipment: utilizing connected sensors, analytics, and cognitive capabilities to sense, communicate and self-diagnose issues in order to optimize performance and reduce unnecessary downtime
 - Cognitive processes and operations: analyzing a variety of information from workflows, context, process, and environment to drive quality, enhance operations and decision-making
 - Smarter resources and optimization: combining various forms of data from individuals, location, usage, and expertise with cognitive insight to optimize and enhance resources such as labor, workforce, and energy

Cognitive Chemical Manufacturing

- £2.5M Project using Machine Learning to Optimise Chemical Manufacturing starting July-Sept 2018
- EPSRC call on 'Digital Manufacturing Potential'
- Led by IPRD Leeds (PI: Richard Bourne)
- Academic Partners: University College London, University of Nottingham, Hartree Centre
- Industrial Support: IBM, AstraZeneca, Swagelok and Promethean Particles
- 4 year project with 14 years of PDRA time

Partner Roles

Project Vision

- Experiments are performed by a linked network of multiple reactor systems like multi threaded computer cores
- Individual reactions are allocated from the cloud based on reactor capability and the efficiency of performing experiments

Synthesis in flow

API synthesis

Lab scale

- Leeds University
- AZ

Plant scale

• Leeds University

Nanomaterial synthesis

Lab scale

- Leeds University
- Nottingham University

Plant scale

• Promethean Particles

Execution Service

Self-Optimising Lab-Bot

- Algorithmic approach to optimising chemical reactions.
- New experiments generated based on previous results via a feedback loop (from the cloud).
- Optimum is verified by experiment.

Self-Optimisation - LabBot

	Ester flow	MeNH ₂	Temperature
Lower	0.1 mL/min	1 eq	0 °C
Upper	0.4 mL/min	10 eq	130 °C

Design of Experiment

Central Composite Faced Design (CCF)

Design of Experiments

Contour Plot (0 °C)

iPRD: On the Chemistry – Engineering interface

iPRD focus:

"Supporting chemical companies of all sizes by providing **understanding** and **solutions** for product and process development"

- Pre competitive fine chemical manufacture related R&D delivering process understanding & new technology
- Research focus driven by challenges in manufacturing
- Generate students with an aptitude for process R&D
- Facilities
 - Industrial standard development lab with Pilot Scale capabilities
 - 20 L scale kg laboratory funded by Yorkshire Forward/EU (ERDF)
 - 5 m FC for flow processing

Project Part-Financed by the European Union

NP synthesis - in flow using a new Lab-Bot

NP synthesis - in flow using a new Lab-Bot

NP synthesis - Scale up

Formulating solutions with nanomaterials

Kinetic models and parametrisation

Simbot

• UCL

Control/monitoring

Lab and plant scale

• University of Leeds

Kinetic modelling

• UCL

The UCL Team

Dr. Federico Galvanin (UCL Lead)

Research Interests

18

- Design of Experiments (DoE) and statistical planning
- Model-based Design of Experiments (MBDoE)
- Kinetic modelling in catalytic systems
- Machine learning applications to model identification
- Modelling of stochastic systems

Dr. Michail Stamatakis

Research Interests

- Computational catalysis
- Chemical reaction engineering
- Multiscale modelling
- Microkinetic modelling
- Kinetic Monte Carlo

UCL Team Contribution to the Project

Co-supervision (with Michail) of a **4-year PDRA at UCL**

Main goal of the UCL team: to develop a **SimBot platform** for the automated generation and identification of kinetic models based on kinetic motifs.

The **Simbot** will be developed in a high level programming language, and it will integrate:

- Automated generation of kinetic motifs/model structure generation
- Online model-based design of automated experiments
- Data analysis
- Process simulation
- Machine learning techniques for model identification

The Simbot will be integrated in the cloud systems for the easy simulation, identification and optimisation of process models.

Development of the Simbot

¹Rangarajan, S., Bhan, A., Daoutidis, P. (2012). Computers & Chemical Engineering, 45, 114.

Online design of experiments for fast identification of kinetic models

Framework for the online identification of parametric models¹

¹M. Quaglio, E.S. Fraga, E. Cao, A. Gavriilidis, F. Galvanin (2018), *Chemometrics and Intelligent Laboratory Systems*, 12, 134-149.

Overall vision

- Individual reactions are allocated from the cloud based on reactor capability and the efficiency of performing experiments
- Outputs
 - Optimal design of experimental conditions/kinetic modelling (speed/resource/cost)
 - Demonstration of optimisation using pilot scale flow reactors (IPRD/Promethean Particles)
 - Reactors will be cognitive, capable of detecting possible future failures and performing experiments in reaction to previous results
 - Model-based process design and optimisation

Cognitive Chemical Manufacturing

- Federico Galvanin (UCL)
- Michail Stamatakis (UCL)
- Frans Muller (Leeds)
- Richard Bourne (Leeds)
- Tom Chamberlain (Leeds)
- Edward Lester (Nottingham)
- Brian Taylor (AstraZeneca)
- Graeme Clemens (AstraZeneca)
- Selina Ambrose (Promethean Particles)
- Edward Pyzer (IBM/Hartree)

