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What 1 s “cognitive

ACognitive chemical manufacturinig aninformation framework where data
across chemical systems, equipment and processes are utilised to derive
actionable insight across the entire value chain from design through
manufacture to support.

ACognitive manufacturing drives kéy productivity improvementsn quality,
efficiency, and reliability of the manufacturing eénvironment.

Alt employscognitive technologiesincluding

- Intelligent assets and equipmenutilizing connected sensors, analytics,
and cognitive capabilities to sense, communicate anddialinose issues
In order to optimize performance and reduce unnecessary downtime

- Cognitive processes and operatioranalyzinga variety of information
from workflows, context, process, and environment'to drive quality,
enhance operations and decisiomaking

- Smarter resources and optimizatiocombining various forms of data
from individuals, location, usage, and expertise with cognitive insight to
optimize and enhance resources sucHai®r, workforce, and energy




CognitiveChemical Mnufacturing

A £2.5M Project using Machine Learning to Optimise Chemical Manufacturing startis®ejul2018
A9t {w/ OFff 2y WS5AIAGIEt al ydzZFlI OQOddzZNAyYy3 t20Sy
ALed by IPRD Leeds (PI: Richard Bourne)

A Academic Partners: University College London, University of NottinghartreeCentre

A Industrial Support: IBM, AstraZeneca, Swagelok and Promethean Particles

A 4 year project with 14 years of PDRA time
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Project Vision

A Experiments are performed by a linked network of multiple reactor systelike multi threaded computer
cores

A Individual reactions are allocated from the cloud based on reactor capability and the efficiency of perform
experiments

Experimental Design Experimental

and Analysis Service Marketplace Execution Service

SimBot ‘

Set of
Experimental
Conditions
(setpoint set)

Allocate
Initialisation Design Experiment Experiment(s)

Information

— g

Analyse Results & Set of Results Collate Results
Model Output Optimise (dataset)




Synthesis In flow

APl synthesis

b scale
Leeds University

A Az

Rlant scale
A Leeds University

Nanomaterial synthesis
b scale
Leeds University

A Nottingham University

Rlant scale
A Promethean Particles

Execution Service
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SeltOptimising LatBot
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A Algorithmic approach to optimising chemical reactions.
A New experiments generated based on previous restitig feedback loop (from the cloud).

A Optimum is verified by experiment.



SeltOptimisation LabBot
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Optimum Conditions
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Design of Experiment

Central Composite Faced Design (CCF)
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Design of Experiments

Contour Plot (0C)

Response Contour Plot - CCF Nicotinic Amide MS (MLR) Amide [%]
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Model Optimunt SeltOptimisation:
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MODDE 10.1,1 - 17/03/2015 16:18:50 (UTC+0)




IPRD: On the Chemistry T Engineering interface

IPRD focus: | L
Supporting chemical companies of all sizes ‘

by providing understanding and solutions |
for product and process

A Pre competitive fine chemical manufacture related R&D
deliveringprocess understanding & new technology

A Research focus driven by challenges in manufacturing
A Generate students with an aptitude for process R&D

A Facilities

A Industrial standard development lab with Pilot Scale capabilities

A 20 L scale kg laboratory
funded by Yorkshire Forward/EU (ERDF)

A 5 m FC for flow processing

vvvvv

Project Part-Financed
by the European Union

European Regional

Development Fund 12




NP synthesisin flow using a new Lé&Bot

Metallic nanoparticles in
carbon nanoreactors
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NP synthesisin flow using a new Lé&Bot
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PrometheanParticles

NP synthesisScale up it Sl

Formulating solutions with nanomaterials
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Printed electronics >

Metal Organic Frameworks (MOF)

Green energy and catalysts >

Healthcare/medical >

Nanocomposites (incl. plastics & coatings) 2>




Kinetic models and parametrisation
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LabBots
Leeds, Nottingham, Swagelok
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SimBots

CLOUD PLATFORM
(IBM)

Focus

A Integration of
Information
fluxes/data

A Integration of
experimental and
simulation activities

PilotBots
(Ceeds/Promethean Patticles)

Generation of Scalable and
Sustainable Industrial Chemica
Processes (AZ, PP)




The UCL Team

Dr. Federico Galvanin
(UCL Lead)

Imperial College
London

Centre for

SN rocae

/‘\ Systems

Engineering

Research Interests

A Design of Experiments (DoE) and statistical planning
A Model-based Design of ExperimentdBDol

A Kinetic modelling in catalytic systems “
A Machine learning applications to model identification

18 A Modelling of stochastic systems

Dr. Michail Stamatakis

Research Interests

A Computational catalysis

A Chemical reaction engineering
A Multiscale modelling

A Microkineticmodelling

A Kinetic Monte Carlo



UCL Team Contribution to the Project

Cosupervision (witiMichail) of a4-year PDRA at UCL

Main goal of the UCL teamo develop e&simBotplatform for the automated generation and
identification of kinetic models based on kinetic motifs.

TheSimbotwill be developed in a high level programming language, and it will integrate:
A Automated generation of kinetimotifs/model structure generation

A Online modebased design of automated experiments

A Data analysis

A Process simulation

A Machine learning techniques for model identification

TheSimbotwill be integrated in the cloud systems for the easy simulation, identification an
optimisation of process models.



Development of theSimbot

SIMBOT

Online design of

experiments for
model identification
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!Rangarajan, SBhan A.,Daoutidis P. (2012). Computers & Chemical Engineering, 45, 114.



Online design of experiments for fast identification of kinetic model

: : |dentification of a
Online design of suitable kinetic model

experiments for structure

model identification? \ Identification of the

Kinetic parameters

[ Set of amptimal experiment } oo} |
Controllability
| i isation of th . | off ' Safety
Minimisation of the experimental effort Brocess Economic

lGalvanin, F., Barolo, M.,Bezzo F. (2009)Industrial & Engineering Chemistry Resepd&h44154427.
?Hunter, W. G., A. M. Reiner (196B&chnometrics7, 307#323. 21
3Box, G. E. P, H. L. Lucas (19®metrika 46, 77-90.



Framework for the online identification of parametric motlels

Identification requires
A a precise estimation of

A the conditions "I ¥ "Ywhere
the model is reliable, i.e.
the domain of validity

experimental
data
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Model-Based Data Mining
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The procedure continues until a
pre-defined statistical quality of
parameters is achieved

M. Quagliq E.SFraga E. Cao, AGavriilidis F.Galvanin(2018),
Chemometricand Intelligent Laboratory System$2, 134149.

Parameter statistics
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Overall vision

A Individual reactions are allocated from the cloud based on reactor capability and
the efficiency of performing experiments
A Outputs

A Optimaldesign of experimental conditions/kinetic modelling
(speed/resource/cost)

A Demonstration of optimisation usingjlot scale flow reactors
(IPRD/Promethean Particles)

A Reactors will be cognitive, capable of detecting possible future failures and
performing experiments in reaction to previotesults

A Model-based process design and optimisation
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