

HOW TO 'DIAL-A-MOLECULE'

Prof. Mimi Hii, Imperial College London co-I, DaM phase III

Dial-a-Molecule annual meeting, Liverpool, 21 June 2017

How about Chemistry?

Joseph Wright of Derby "The Alchemist discovering Phosphorus" (1771)

A modern day rotary evaporator...

GeneVac (parallel evaporator)

REACTION VARIABLES (OPTIMISATION)

THE CHALLENGE

TO:

The Alchemist discovering phosphorus Joseph Wright of Derby (1771)

DATA ANALYSIS/PREDICTION

NEW PLATFORM (AUTOMATION)

WORKFLOW OF AN AUTONOMOUS SYSTEM

DIAL-A-MOLECULE GRAND CHALLENGE

How can we molecules in days not years?

http://generic.wordpress.soton.ac.uk/dial-a-molecule/

Phase I & II: 2010-5 (PI: Richard Whitby; co-I's: Steve Marsden, David Harrowven) Phase III: 2016-2020 (PI: Richard Whitby; co-I: Mimi Hii)

Computer-assisted organic synthesis software: WODCA, Organic Synthesis Exploration Tool (OSET), CHIRON, SynGen, LHASA, SYLVIA, ICSynth, Chematica.

Computation software: DFT, Multivariate analysis, kinetic models.

Quality and quantity of reaction data: Stepstone group, Open data framework, National reaction database?

Predictable reaction outcome/success rate

DATA ACQUISITION

Discovery

- Parallel reaction platform(s) up to 96 parallel reactions
- Automatic dispensing, dosing and sampling capability
- LC, GC and MS rapid analysis capability: few data points per reaction

Reaction Dynamics

- Study of reaction dynamics using spectroscopy, calorimetry, multiple sampling etc to generate high-quality multiple data points per reaction.
- Mono- to multiphasic reactions, including high T/P

Continuous Flow

- 'New' reaction platforms, e.g. photochemistry
- Understand process robustness (e.g. catalyst stability), process intensification
- Continuous monitoring (inline/online analytics)

DIAL-A-MOLECULE GC INSTITUTE: RAPID ONLINE ANALYSIS OF REACTIONS (ROAR)

Number of data points collected (per reaction)

COST OF THE PROJECT

ltem	Costs/£	EPSRC ^[a] /£	Imperial ^[b] /£	Sponsors ^[c] /£
Equipment	2,208,591	2,208,591	-	-
Building costs	875,000	-	875,000	-
Personnel	64,6453	418,711	216,585	-
Estate & indirect costs	62,412	62,412	-	-
Consumables	60,000	60,000	-	-
Maintenance	44,142	44,142	-	-
Software, licenses	85,663	85,663	-	-
Travel & subsistence	1 <i>5,</i> 000	1 <i>5</i> ,000	-	-
Cash	-	-	30,000	63,000
In kind	-	-	-	681,079
Total cost(s)	£4,760,183	2,894,519	1,121,585	744,079
		(60.8%)	(23.6%)	(15.6%)
		•		

STATEMENT OF NEED

Society: Synthesis by design, on-demand will have a transformative effect on the future of manufacturing to more localised production based on available resources.

Academia: Provide new synthetic tools and technology to advance chemical research (Lab of the future). Training next generation of synthetic chemists. Facilitate collaboration with developers and end-users of these technology.

CRO, **SME**: Resources for capital investment is limited – access to GCI to assess and evaluate the most appropriate technology for their business in order to justify longer term investment. Overall, improve capability and technological advantages over their competitors.

Vendors: Develop relevant scientific equipment to the synthetic chemistry community. The GCI will allow them to deliver appropriate training, beta-test and debug prototypes (faster time-to-market). Unbiased endorsement (promote sales).

Large Internationals: Ultimate beneficiary of all the above activities – access to highly-skilled work force, supported by more technologically advanced CRO's and SME's. Ability to collaborate more widely with Academia and other industry to develop next generation of reaction platform.

Mechanisms:

- 1. Paid access (user survey)
- 2. Research projects supported by DaM network support for accessing facility in proposals
- 3. $\pounds 62/h$ FEC (TRAC) reduced to $\pounds 14/h$ non-FEC and $\pounds 59$ FEC
- 4. Non-profit making in years 1-3
- 5. Charge-out fee structure to be determined by demand
- 6. Significant demand = future expansion for ROAR/regional 'spokes'

- Molecular Sciences Research Hub, White City Campus.
 - Scheduled to open 2018.

"...drive a new way of doing chemistry that <u>transcends disciplinary and institutional</u> <u>boundaries</u> in the search for solutions to some of the great challenges facing humanity."

https://www.imperial.ac.uk/white-city-campus/

TIME LINE

- Expression of interest (1 December 2016)
 - Invitation to submit full proposal (early Feb 2017)
 - Submission of full proposal:
 - 10 March (internal approval), 16 March (EPSRC deadline)

- Postal reviews
- Panel interview: 12 July 2017
- Notification: 'late July'
- Project commence: 1 October 2017
- Move to MSRH: Early 2018

So watch this space.....

