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ABSTRACT 23 

Climate impacts and adaptation studies often use output from impact models that require 24 

data representing future climates at a resolution greater than can be provided by Global 25 

Climate Models (GCMs). This paper describes the use of Regional Climate Model (RCM) 26 

simulations to generate high-resolution future climate information for assessing climate 27 

impacts in the Ganges-Brahmaputra-Meghna (GBM) and Mahanadi deltas as part of the 28 

DECCMA project. In this study, three different GCMs (HadGEM2-ES, CNRM-CM5 and 29 

GFDL-CM3), all using a single scenario for future greenhouse forcing of the atmosphere 30 

(RCP 8.5), were downscaled to a horizontal resolution of 25km over south Asia using the 31 

HadRM3P RCM. These three GCMs were selected based on ability to represent key climate 32 

processes over south Asia and ability to sample a range of regional climate change 33 

responses to greenhouse gas forcing.  RCM simulations of temperature, precipitation, and 34 

lower level (850 hPa) atmospheric circulation in the monsoon season (June, July, August, 35 

September ï JJAS) were compared with observational datasets and their respective driving 36 

GCMs to ensure large-scale consistency.  Although there are some biases in the RCM 37 

simulations, these comparisons indicate that the RCMs are able to simulate realistically 38 

aspects of the observed climate of South Asia, such as the monsoon circulation and 39 

associated precipitation that are key for informing downstream impacts and adaptation 40 

studies. Simulated future temperature and precipitation changes on seasonal and daily 41 

timescales suggest increases in both temperature and precipitation across all three models 42 

during the monsoon season, with an increase in the amount of extremely heavy precipitation 43 

over the GBM and Mahanadi basins.  Despite different driving conditions, these results are 44 

consistent across all three RCM simulations, providing a level of confidence in the 45 

magnitudes and spatial characteristics of temperature and precipitation projections for South 46 

Asia.   47 

 48 
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1. INTRODUCTION 49 

Many delta regions of South Asia are densely populated and heavily reliant on agriculture for 50 

livelihoods and wellbeing, which is vulnerable to changes in rainfall variability potentially 51 

leading to enhanced flooding or drought.  South Asia comprises a region of complex 52 

atmospheric dynamics and regional climate processes.  Potential changes in these 53 

dynamics resulting from the warming induced by increasing greenhouse gas concentrations, 54 

combined with existing vulnerability to extreme weather events such as flooding due to low-55 

lying topography, could put the region at severe risk from future climate changes (Caesar et 56 

al., 2015).  The DECCMA project (Hill et al., this issue) aimed to assess the numerous 57 

potential impacts and adaptations to these climate changes on the populations of the 58 

Ganges-Brahmaputra-Meghna (GBM) and Mahanadi deltas. This paper describes how the 59 

climate information that underpins these assessments was generated. 60 

The climate of South Asia is characterised by high temperatures, a monsoon season with 61 

heavy rainfall, periods of high humidity and strong seasonal variations. The dominant 62 

regional climate feature is the seasonal reversal of the large-scale atmospheric circulation 63 

between summer and winter months, resulting in the rainy season known as the ósummerô or 64 

óSouth Asianô monsoon.  The annual climate of South Asia can typically be separated into 65 

four distinct seasons: pre-monsoon (March-April-May, denoted as MAM), monsoon (June-66 

July-August-September, denoted as JJAS), post-monsoon (October-November, denoted as 67 

ON), and winter (December-January-February, denoted as DJF).  The summer monsoon 68 

season brings the highest accumulation of precipitation seen during the year, with around 69 

70-80% of the regionôs total annual precipitation falling within the JJAS season (Caesar et 70 

al., 2015; Kumar et al., 2013; Kumar et al., 2006).   71 

Studies based on observational records have not revealed a significant trend in either 72 

increases or decreases in average monsoon rainfall across India as a whole, however 73 

regional trends across meteorological subdivisions of India and Bangladesh are apparent 74 
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(Rupa Kumar et al., 2002; Dash et al., 2007; Kumar et al., 2013).  On daily timescales, some 75 

studies have observed an increase in the frequency of extreme rainfall days across much of 76 

the subcontinent, possibly due to increased moisture content and warmer sea surface 77 

temperatures in recent history (Christensen et al., 2013; Goswami et al., 2006).  Although 78 

single extreme rainfall events such as the severe flooding event in July 2005 across Mumbai 79 

cannot be directly attributed to climate change (Kumar et al., 2013), many studies around 80 

the world are demonstrating how climate change is increasing the risk of such extreme 81 

events happening (e.g. Pall et al., 2011; Schaller et al., 2016; Philip et al., 2018).   82 

A number of previous modelling studies, making use of both global climate model (GCM) 83 

and regional climate model (RCM) information for South Asia, have been performed to 84 

assess future impacts of climate change for this vulnerable region (Bhaskaran et al., 1996; 85 

Ueda et al., 2006; Kumar et al., 2006; Islam et al., 2008; Krishna Kumar et al., 2011; Sabade 86 

et al., 2011; Kumar et al., 2013; Bal et al., 2015; Caesar et al., 2015).  There is a strong 87 

consensus amongst climate projection studies for increases in temperatures across much of 88 

South Asia by the end of the 21st century, with a spread in the magnitudes dependent on 89 

greenhouse gas emission scenario and employed methodology (Caesar et al., 2015; Kumar 90 

et al., 2013; Christensen et al., 2013; Kumar et al., 2006).  Similarly, a number of studies 91 

project an increase in annual precipitation for South Asia, and particularly Bangladesh, with 92 

the intensity of heavy precipitation events projected to increase across the country (Caesar 93 

et al, 2015; Sabade et al., 2011; Ueda et al., 2006).  Current climate model capabilities in the 94 

realism of their simulation of summer monsoon characteristics are varied. Previous 95 

modelling studies suggest both a potential increase and decrease in the associated strength 96 

of the summer monsoon circulation in the 21st century, highlighting the complexity of 97 

modelling the dominant climate processes within this region (Janes & Bush, 2012; Kripalani 98 

et al., 2007; Tanaka et al., 2005).  To date, climate change studies focused on South Asia 99 

are somewhat limited, and many are based on results from a singular modelling experiment. 100 

One study (Kumar et al., 2013) takes a multi model approach to better explore climate 101 
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variability and change in South Asian climate dynamics, rather than relying on output from a 102 

singular future climate scenario. Taking an ensemble approach (Kumar et al., 2013; Jacob et 103 

al., 2007; Reichler and Kim, 2008), whereby results from multiple modelling activities is 104 

considered for analysis, provides a range of plausible climate changes. These are then 105 

relevant to undertaking a comprehensive assessment of risks and responses to climate 106 

change which is not possible when results are drawn from single scenario of future climate.   107 

This study aims to help address this knowledge gap, and describes the use of an ensemble 108 

of three RCM simulations to generate high-resolution climate datasets over South Asia for 109 

assessing climate impacts in the GBM and Mahanadi deltas.  Realistic representation of 110 

precipitation during the summer monsoon is important for producing user-relevant 111 

projections of regional climate for use in downstream impacts models due to the dominance 112 

of this season in providing much of the regionalôs total annual precipitation.  For this reason, 113 

the analysis within this paper focuses mainly on the summer monsoon season of JJAS.  114 

Section 2 of the paper summarizes the use of climate models and the model selection 115 

process taken in this study to produce three RCM simulations.  Section 3 validates results 116 

from these RCM simulations against both observational datasets and their respective driving 117 

GCMs.  Sections 4 and 5 investigate potential changes in key climate characteristics under 118 

increasing greenhouse gas emissions, followed by a summary of discussions and 119 

conclusions based on the results outlined here.  120 

 121 

2. MODEL SELECTION AND DOWNSCALING 122 

 123 

2.1 DOWNSCALING GLOBAL CLIMATE MODELS 124 

The most recent assessment report of the Intergovernmental Panel on Climate Change 125 

(IPCC) used ensembles of GCM simulations from the Coupled Model Intercomparison 126 
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Project phase 5 (CMIP5) (Taylor et al., 2012) to provide projections of future climate 127 

conditions for regions of the world, including South Asia (IPCC, 2013; IPCC, 2014).  GCMs 128 

are an invaluable tool for assessing potential climate change resulting from increased 129 

greenhouse gas emissions, and are useful for assessing potential changes in large-scale 130 

global phenomena such as the summer monsoon over South Asia. While suitable as a basis 131 

for an overall narrative for future regional climate changes, these coarse-resolution 132 

simulations do not provide information at high enough resolution to guide detailed 133 

assessment of the impacts of climate change through the use of downstream impacts 134 

models (e.g. hydrological and agricultural models).   135 

To overcome the limitations of the coarse resolution GCMs, which typically have grid cells 136 

hundreds of kilometres across, high-resolution physically-consistent datasets for a large 137 

range of relevant climate variables can be generated through ódynamical downscalingô, 138 

whereby GCM output is used to drive a high-resolution RCM. RCMs are better able to 139 

represent local topography, coastlines, land use and regional atmospheric processes than 140 

coarse-resolution GCMs. They can add significant detail to the information obtained from 141 

GCMs, in particular for regional climate impacts studies and analyses of extreme events (Bal 142 

et al., 2015; Caesar et al., 2015; Kumar et al., 2013; Krishna Kumar et al., 2011).   143 

 144 

2.2 SELECTION OF GCMS FOR DOWNSCALING 145 

The CMIP5 GCMs provide simulations of the future climate forced with different scenarios 146 

for ñradiative forcingò, or the energy imbalance of the climate system due changing 147 

greenhouse gas and aerosol concentrations in the atmosphere.  These scenarios are known 148 

as Representative Concentration Pathways (RCPs) (Moss et al., 2010; van Vuuren et  al., 149 

2014). The CMIP5 dataset includes simulations of four different RCPs using over 40 GCMs 150 

(although simulations are not available for every RCP/GCM combination) and is considered 151 
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to provide reasonable sampling of uncertainties in future climate conditions on large spatial 152 

scales. Ideally, we would consider a large number of climate datasets to fully sample 153 

uncertainties in future climate changes and resulting impacts. However, limited resources for 154 

running both RCM simulations and downstream impact model simulations meant that this 155 

was impractical. Therefore, a single RCP scenario (RCP 8.5) was selected for consideration 156 

in the DECCMA project (Kebede et al., 2018).  This allowed us to focus on sampling the 157 

range of uncertainty arising from the use of different climate models. RCP 8.5 is a scenario 158 

depicting the highest greenhouse gas emissions, assuming high energy demand due to 159 

large population increases and slow rates of development and adaptation (Riahi et al., 160 

2011).  It is therefore expected to give a strong, discernible climate change signal in 161 

modelling results. Given that climate and impacts modelling constraints restricted us to 162 

running only three downscaled simulations, we focused on sampling uncertainty in the 163 

GCMs as the main source of modelling uncertainty at regional scales (Deque et al. 2005, 164 

Kendon et al., 2010) and thus used a single RCM (HadRM3P) for the downscaling activities 165 

performed here.  HadRM3P has been tested and verified for accurate performance for a 166 

variety of regions around the world (Mearns et al., 2013; James et al., 2014; Massey et al., 167 

2014; Bal et al., 2015; Centella-Artola et al., 2015; Williams et al., 2015). 168 

In selecting CMIP5 models for downscaling with HadRM3P we followed the approach of 169 

McSweeney et al. (2015) and built on its application in a recent collaborative project with the 170 

Met Service Singapore (see Table 1, Marzin et al., 2015).  This approach advises selecting 171 

GCMs for downscaling based on two criteria: 172 

1. All selected GCMs should have a satisfactory simulation of relevant aspects of the 173 

recent climate of the region of interest. 174 

2. Future climate changes in the region of interest simulated by the ensemble of 175 

selected GCMs should span the range of future climate changes spanned by the full 176 

ensemble of satisfactory GCMs. 177 
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HadGEM2-ES Met Office Hadley Centre 

ACCESS1-0 Commonwealth Scientific and Industrial 
Research Organization and Bureau of 
Meteorology  

 BCC-CSM-1-1-M Beijing Climate Center  

CanESM2  Canadian Centre for Climate Modelling and 
Analysis 

CMCC-CM   Centro Euro-Mediterraneo per I 
Cambiamenti Climatici 

CNRM-CM5 Centre National de Recherches 
Meteorologiques 

CSIRO-Mk3-6-0 Commonwealth Scientific and Industrial 
Research Organisation in collaboration with 
the Queensland Climate Change Centre of 
Excellence 

GFDL-CM3   Geophysical Fluid Dynamics Laboratory 

GFDL-ESM2G   Geophysical Fluid Dynamics Laboratory 

IPSL-CM5A-LR Institut Pierre-Simon Laplace 

Table 1. Model names and institution details for the 10 CMIP5 GCMs considered for 178 
downscaling in this study. 179 

 180 

In addressing the first criterion, a number of models were immediately eliminated from the 181 

selection due to either a) a lack of robust monsoon dynamics as described in McSweeney et 182 

al. (2015), or b) incorrect climate characteristics or responses identified in a previous project 183 

(Marzin et al., 2015). No additional GCM assessments specific to the South Asia region was 184 

performed as these were part of the work undertaken by McSweeney et al. (2015) and the 185 

Met Service Singapore project, and so applicable to our region of interest. 186 

To address the second criterion, we examined climate changes between the 1961-1990 time 187 

period and the 2070-2099 time period in the RCP 8.5 simulations of the different CMIP5 188 

GCMs. Future changes in annual and seasonal mean temperature and precipitation were 189 

calculated over a region covering the Mahanadi and GBM basins (15-30ęN, 80-95ęE).  These 190 

results were subsequently used to select GCMs that spanned as much as possible of the 191 

range of future climate changes simulated by the full CMIP5 ensemble, for both the annual 192 
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and seasonal timescales (Fig 1). Through assessing the spread of models on both annual 193 

and seasonal timescales, we were able to identify three models which sufficiently span the 194 

range of plausible future changes within the full set of GCMs available for downscaling.  We 195 

then cross-referenced these GCMs with the findings of McSweeney et al. (2015), to ensure 196 

adequate performance over larger monsoon regions. The three GCMs chosen for 197 

downscaling within the DECCMA project were HadGEM2-ES, CNRM-CM5, and GFDL-CM3.  198 

Each of these global models has slightly different grid resolutions: 1.25° latitude X 1.875° 199 

longitude for HadGEM2-ES, 1.4° latitude X 1.4° longitude for CNRM-CM5, and 2.0° latitude 200 

X 2.5° longitude for GFDL-CM3. 201 
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 202 

 203 

Figure 1: CMIP5-simulated future climate changes for RCP 8.5 for a region covering the 204 

Mahanadi and GBM basins (15-олɕb, 80-фрɕ9ύΦ /ƘŀƴƎŜǎ ƛƴ ŀƴƴǳŀƭ ƳŜŀƴ ǘŜƳǇŜǊŀǘǳǊŜ ŀƴŘ 205 

precipitation between 1961-1990 and the 2080s are shown in the top panel.  Subsequent 206 

panels show the same analysis for seasonal means (DJF = December, January, February; 207 

MAM = March, April, May; JJA = June, July, August; SON = September, October, 208 

November). Grey numbers represent GCMs that could not be downscaled due to a lack of 209 

output suitable for input to an RCM. Orange numbers indicate the three GCMs that were 210 

selected for downscaling in the DECCMA project.  211 

 212 
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Seasons outside of the monsoon season may be of interest to those assessing climate 213 

change impacts and are important to the regional climate dynamics of the region. Note, 214 

however, that it was not possible to sample the full range of changes in annual and seasonal 215 

mean temperature and precipitation with just these three GCMs selected. Most obviously, 216 

the selected GCMs do not span much of the uncertainty in CMIP5-simulated future changes 217 

in seasonal mean precipitation for the March, April, May (MAM) season (Fig 1). In this 218 

season, all three selected GCMs simulate future increases in seasonal mean precipitation of 219 

0.5mm/day or less. However, some CMIP5 GCMs simulate future decreases in seasonal 220 

mean precipitation for this season and some simulate increases of greater than 0.5mm/day. 221 

Thus, one consequence of the limited number of GCMs used in this study is to exclude 222 

those simulating the most extreme future climate changes. 223 

  224 

2.3 REGIONAL CLIMATE MODELS 225 

Coarse resolution output from three different GCMs selected above was used as lateral 226 

boundary and sea-surface conditions to drive the Met Office Hadley Centre RCM, HadRM3P 227 

(Jones et al., 2004; Massey et al., 2014).  This is a high-resolution limited area model, which 228 

underlies the Providing Regional Climates for Impacts Studies (PRECIS) regional modelling 229 

system.   The RCM simulations undertaken here using HadRM3P are at a resolution of 0.22° 230 

X 0.22° (approximately 25 km), with 19 vertical levels and 4 soil levels.  The chosen model 231 

domain covers South Asia, allowing for the development of full mesoscale circulation 232 

patterns that influence the monsoon system (Fig 2).  A considerable amount of research has 233 

been done to assess the appropriate domain choice for capturing monsoon dynamics over 234 

India (Bhaskaran et al., 2012). In addition, the choice of this domain will allow the information 235 

produced within the DECCMA project to be applicable to a number of current and future 236 

research and collaboration opportunities in the region. 237 
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 238 

Figure 2: Downscaling domain for South Asia, depicting the model elevation (m).  Red 239 

dashed box indicated the common validation area (CVA) used for comparison of annual 240 

cycles in RCMs and observed temperature and precipitation.  The CVA contains the 241 

following latitude and longitude ranges: 15-30° N, 70-95° E. 242 

 243 

 244 

3. VALIDATION OF RCM SIMULATIONS 245 

RCM simulations were validated against climate observations following methods by Caesar 246 

et al. (2015).  Model outputs were compared to fine-resolution gridded temperature, 247 

precipitation, and lower level wind observations and reanalyses (a full list of datasets used in 248 

this study can be found in Table 2). Note that other gridded observational temperature and 249 

precipitation datasets are available, but not all of these are suitable for validating RCM 250 

simulations. For example, the GPCP and CMAP precipitation datasets (Adler et al., 2003; 251 
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Xie and Arkin, 1997) have a much coarser spatial resolution (2.5° x 2.5°) than the RCM 252 

simulations. 253 

Dataset Abbrev. Variables Resolution Period Reference 
Climatic 
Research Unit 
TS3.10 

CRU Temperature, 
Precipitation 0.5° x 0.5° 

1901-
2009 

Harris et al. (2014) 

University of 
Delaware 

UDEL Precipitation 
0.5° x 0.5° 

1950-
1999 

Willmott & Matsuura 
(1995) 

APHRODITE 
version 
1003R1 
dataset 
(Aph.v10)  
 

APHRODITE Precipitation 

0.25° x 0.25° 
1951-
2007 

Yatagai et al. (2012) 

Global 
Precipitation 
Climatology 
Centre 

GPCC Precipitation  

0.5° x 0.5° 
1901-
present 

Schneider et al. 
(2015) 

Global 
Historical 
Climatology 
Network ï 
Climate 
Anomaly 
Monitoring 
System 

GHCN-
CAMS 

Temperature 

0.5° x 0.5° 
1948-
present 

Fan and van den 
Dool (2008) 

ERA-Interim 
ERAI Winds 

0.75° x 0.75° 
1979-
present 

Dee et al. (2011) 

 254 
Table 2: Gridded observational temperature and precipitation datasets used for RCM 255 

simulation validation. 256 

 257 

In this study, climatological mean surface air temperature and precipitation data averaged 258 

over the 1971-2000 (30-year) period from the RCM simulations were compared with 259 

observed datasets averaged over the same time period. For the comparison of lower-level 260 

winds (crucial to ensuring the realistic simulation of monsoon dynamics), climatological 261 

mean data for the 1979-2000 (22-year) period was used due to limited timescales available 262 

within the ERAInterim dataset. To promote a fair comparison, all data were regridded to the 263 

coarsest of the spatial resolution of the datasets (i.e. regridded onto a 0.5° x 0.5° grid for 264 

temperature and precipitation, and 0.75° x 0.75° for lower-level winds).  Sea grid cells in the 265 

RCM data were masked out to be consistent with the observational temperature and 266 

precipitation datasets, which have no data over oceanic points.  267 
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The RCM and observational data were then compared in two ways. Firstly, annual cycles 268 

based on monthly mean data averaged over a common validation region (CVA) shown in 269 

Figure 2 were calculated. This region covers much of the GBM river basin and the entire 270 

Mahanadi river basin, both foci of the DECCMA project. However, it also extends further 271 

south to include the area of maximum monsoon precipitation from the summer monsoon, 272 

allowing for the assessment of typical monsoon characteristics. Secondly, maps of 273 

climatological mean data for June-September (JJAS) season were compared, as this season 274 

is the dominant provider of the regionôs total annual precipitation. For brevity, only one 275 

observational dataset was used in each of these spatially-explicit comparisons: CRU for 276 

temperature, GPCC for precipitation, and ERA-Interim for winds. 277 

Additionally, the RCM data were compared against corresponding data from their respective 278 

forcing GCM simulations, both averaged over the 1971-2000 time period. As with 279 

observational data, the RCM data were regridded to the coarser resolution of the GCM data 280 

and then compared using maps of the June-September (JJAS) season. This methodology 281 

helps us to verify that, on larger spatial scales, the RCM simulations are consistent with their 282 

forcing GCM simulations. 283 

 284 

3.1 Temperature 285 

Figure 3 compares the 1971-2000 climatological mean annual cycles in surface air 286 

temperature for the CVA region, for each of the three RCM simulations as well as the CRU 287 

and GHCN-CAMS observational datasets. The CRU dataset is marginally warmer than the 288 

GHCN-CAMS dataset, particularly during the monsoon season. These differences could be 289 

down to the number of stations used in the gridding process, interpolation methods invoked, 290 

or in the application of any elevation corrections. 291 
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 292 

Figure 3: 1971-2000 climatological mean annual cycles in surface air temperature for each 293 

of the three RCM simulations and the CRU and GHCN-CAMS observational datasets. 294 
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All three models are able to simulate fluctuating temperatures across an annual cycle, with 295 

varying amplitudes across the ensemble (Fig 3). During the months of April-September, the 296 

HadGEM2-ES-forced simulation and the GFDL-CM3-forced simulation are both able to 297 

realistically capture summer temperature patterns.  The CNRM-CM5-forced simulation has 298 

an additional slight cold bias of approximately 1°C in these summer months.  All three 299 

models show a pronounced cold bias during the winter months, ranging from approximately 300 

3-4°C for the HadGEM2-ES-forced simulation to 5-6°C for the GFDL-CM3-forced simulation.  301 

To better characterise the nature of the cold biases in temperature described above, spatial 302 

comparisons between the three models and the CRU observational dataset are shown in 303 

Figure 4.  In the monsoon season (JJAS), all three RCM simulations depict a small cold bias 304 

for most of the region, with maximum biases occurring over the Himalayas (Fig 4).  Over 305 

central India and Bangladesh, both the HadGEM2-ES-forced simulation and the CNRM-306 

CM5-forced simulation show slight cold bias, whereas temperature biases in the GFDL-307 

CM3-forced simulation are minimal for this region.  Across the whole domain, it is clear that 308 

the cold biases in the CNRM-CM5-forced simulation are generally larger than in the other 309 

two simulations (consistent with Fig 3.), with no warm biases anywhere in the region. It is 310 

possible that in this topographically complex region, differences in elevation between the 311 

RCM and the observing sites contributing data to the observational dataset are leading to 312 

this apparent bias, which is more pronounced during the winter months (Fig 3). In 313 

mountainous regions, observational stations are often located at lower elevations within 314 

accessible valleys, which can lead to warm biases within gridded observational datasets as 315 

conditions at higher elevations are not accurately captured.  This results in an apparent cold 316 

bias within RCM simulations, particularly in the winter months, and has been found in a 317 

number of previous studies using a range of RCMs over South Asia (Rupa Kumar et al., 318 

2006; Islam et al., 2009; Gu et al., 2012).  For the purpose of this validation, which focuses 319 

solely on the monsoon season of JJAS, no correction for height differences between model 320 

results and observational datasets has been applied.   321 
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 322 

 323 
   324 

Figure 4: 1971-2000 climatological mean surface air temperature for JJAS for each of the 325 

RCM simulations and the CRU observational dataset. Differences between the RCM and 326 

CRU datasets are also shown. 327 

 328 
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When comparing the driving GCM data to observations, large cold biases over the 329 

Himalayas are also present, but to a lesser extent for the HadGEM2-ES GCM than for the 330 

other two GCMs (not shown). RCM biases over the rest of the region do not appear to be 331 

directly inherited from their forcing GCMs, and are therefore likely to be a product of the 332 

RCM itself.  However, a component of the biases between the RCM simulations and the 333 

gridded observational datasets may be due to the formulation of the observational datasets, 334 

which in themselves are inherently uncertain over regions of complex topography. 335 

Comparing regridded RCM output to results from the driving GCM (Fig 5) suggests that both 336 

the HadGEM2-ES-forced RCM simulation and the CNRM-CM5-forced simulation are slightly 337 

colder in most of the region, including in the ocean, than their respective driving GCMs. This 338 

difference in temperature is largest in the Himalayas, which could again be related to 339 

differences in topography across the RCM and GCM implementation. A region of warmer 340 

temperatures extends eastwards from Pakistan across northern India and Bangladesh, 341 

consistent with the comparison of HadGEM2-ES-forced RCM results with observations.  342 

Conversely, the GFDL-CM3-forced RCM simulation has a small region of warmer 343 

temperatures compared to its forcing GCM, even extending into the Himalayas. These 344 

results suggest general large-scale RCM-GCM consistency, but further confirms that biases 345 

in the RCM results shown here are not entirely inherited from their driving GCMs. 346 
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 347 

Figure 5: 1971-2000 climatological mean surface air temperature for JJAS for each of the 348 

RCM simulations and for their corresponding forcing GCM. Differences between the RCM 349 

and GCM datasets are also shown. 350 

 351 

 352 


